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This paper considers two-dimensional flow generated in a stably stratified porous
medium by monotonic differential heating of the upper surface. For a rectangular
cavity with thermally insulated sides and a constant-temperature base, the flow near
the upper surface in the high-Darcy–Rayleigh-number limit is shown to consist of
a double horizontal boundary layer structure with descending motion confined to
the vicinity of the colder sidewall. Here there is a vertical boundary layer structure
that terminates at a finite depth on the scale of the outer horizontal layer. Below the
horizontal boundary layers the motion consists of a series of weak, uniformly stratified
counter-rotating convection cells. Asymptotic results are compared with numerical
solutions for the cavity flow at finite values of the Darcy–Rayleigh number.

1. Introduction
Owing to heating of the Earth’s surface, many near-surface groundwater flows take

place within a stably stratified environment which tends to inhibit motion. However,
where uneven surface heating occurs, such as at the boundary between land and sea,
horizontal differential heating can generate significant groundwater movement. An
understanding of such motion can be important, for example, in judging the possible
impact of industrial waste-water discharge into the sea (Tayler 1986). In the present
paper a simple mathematical model is considered in which steady two-dimensional
motion is generated within a stably stratified porous medium by differential heating
of the upper surface. The main objectives are to determine the nature of the flow and
temperature fields generated in the high-Darcy–Rayleigh-number limit and the depth
to which motion extends.

Much of the previous work on thermally driven high-Darcy–Rayleigh-number flows
is concerned with cavities heated from the side: the vertical boundary layer structure
was first discussed by Weber (1975) and the horizontal boundary layer structure by
Daniels, Blythe & Simpkins (1982). Similarity solutions of the horizontal boundary
layer equations on a heated horizontal wall have been discussed by Cheng & Chang
(1976) and Chang & Cheng (1983). More recently, the flow generated by differential
heating of the upper surface of a rectangular cavity whose other three walls are
thermally insulated has been considered by Daniels & Punpocha (2004; 2005) and
Daniels (2006).

In the present work the flow is assumed to take place within a rectangular cavity with
thermally insulated sidewalls and a lower surface held at constant temperature. The
problem is formulated in § 2 and some numerical solutions are presented in § 3. Daniels
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& Punpocha (2005) have shown that, for the case where the lower surface is thermally
insulated, the main circulation takes place within horizontal and vertical boundary
layers of depth order R−1/3 near the upper surface, where R � 1 is the Darcy–Rayleigh
number based on the cavity depth and the temperature difference along the upper
surface. In that case, fluid moves along the upper surface to the colder end where it
descends within a vertical boundary layer and is detrained back into the horizontal
layer. The remainder of the cavity contains a weaker circulation, and is to leading
order at a constant temperature somewhat greater than that of the colder end of the
upper surface. In the present paper the temperature of the lower surface of the cavity is
assumed to be held less than this value, with the consequence that the core is replaced
by a stably stratified region of almost negligible motion. In addition, a new double
horizontal/vertical boundary layer structure occurs near the upper surface. The
inner horizontal layer of depth order R−1/3 is similar to that of the insulated problem
analysed by Daniels & Punpocha (2005), and is considered in § 4. The outer horizontal
layer, which has depth of order R−1/4, is considered in § 5 and is needed to allow
the temperature field to adjust to its stably stratified form in the core region below.
An interesting feature of this adjustment is that the vertical boundary layer near the
colder sidewall terminates at a finite depth measured on the scale of the R−1/4 layer.
The terminal structure is considered in § 6 and the main results of the paper are
summarized in § 7.

2. Formulation
A rectangular two-dimensional cavity 0 � x∗ � d, 0 � z∗ � h is filled with a

fluid-saturated porous medium. The upper boundary z∗ = h is held at temperature

T ∗ = T ∗
0 + �T S(x∗/d), (2.1)

where the function S(x∗/d) varies monotonically from zero at x∗ = 0 to 1 at x∗ = d .
The vertical walls x∗ = 0 and x∗ = d are thermally insulated and the lower boundary
z∗ = 0 is held at temperature

T ∗ = T ∗
0 + τ�T, (2.2)

where τ is a constant. Subject to Darcy’s law and the Oberbeck–Boussinesq
approximation, steady two-dimensional motion is governed by the non-dimensional
equations

∇2ψ = −R
∂T

∂x
, ∇2T =

∂(T , ψ)

∂(x, z)
, (2.3)

where ψ(x, z) is the streamfunction non-dimensionalized by the thermal diffusivity
κ , T (x, z) is the temperature measured relative to T ∗

0 and non-dimensionalized by
�T, (x, z) are Cartesian coordinates non-dimensionalized by h, and R = Kgω�T h/κν

is the Darcy–Rayleigh number, where K is the permeability, ω is the coefficient of
thermal expansion, ν is the kinematic viscosity and g is the acceleration due to
gravity. The non-dimensional velocity components in the x, z directions are given by
u = ∂ψ/∂z, w = − ∂ψ/∂x respectively.

The cavity walls are assumed to be impermeable so that the boundary conditions are

ψ =
∂T

∂x
= 0 on x = 0, L, (2.4)

ψ = 0, T = τ on z = 0, (2.5)

ψ = 0, T = S(x/L) on z = 1. (2.6)
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Solutions of the problem defined by (2.3)–(2.6) depend on the Darcy–Rayleigh
number R and the aspect ratio L = d/h, and also on τ and the specific form of the
temperature profile S(x/L) at the upper surface, which is taken to be

S(x/L) = 1 −
(

1 − x

L

)2

. (2.7)

Apart from being a monotonic function, the precise form of S is not expected to have
a significant impact on the large-Darcy–Rayleigh-number structure of the solution;
the form (2.7) is chosen to enable comparison with previous results (Daniels &
Punpocha 2005).

Note that because the sidewalls of the cavity are thermally insulated, it follows that
the heat-flux integral ∫ L

0

(
∂T

∂z
− ψ

∂T

∂x

)
dx = H (2.8)

is constant for all values of z. In particular, H defines the heat flux into and out of
the upper and lower surfaces of the cavity respectively, and is to be determined as
part of the solution.

3. Numerical solutions
Numerical solutions of (2.3)–(2.7) were computed by inserting artificial time

derivatives ∂ψ/∂t and ∂T /∂t on the right-hand sides of (2.3) and allowing the
solution to evolve to its steady-state form. An explicit finite difference scheme was
used with a forward difference in time and second-order accurate central differences
in x and z. Quadratic extrapolation based on two internal grid points was used to
implement the boundary conditions on ∂T /∂x at x = 0 and x =L. Solutions were
computed to high spatial accuracy using step sizes �x and �z of 0.01, 0.005 and
0.0025, with time steps �t in the range 2 × 10−5 to 10−6 to maintain numerical
stability. A selection of results for a square cavity (L = 1) is shown in figures 1–3.
For a potentially unstable case where the bottom wall temperature is equal to the
maximum temperature of the upper surface (τ =1) a steady-state solution is obtained
for R as high as 2000 (figure 1) and indicates the development of a complex thermal
structure with significant variations near all four boundaries. For the stable case with
τ = −1, steady-state solutions can be obtained in principle for ever-increasing values
of R; results for R =2000 and R =5000 are shown in figures 2 and 3 respectively.
These indicate well-defined regions of circulation near the upper surface of the cavity,
with the lower part dominated by a uniform stratification and an extremely weak set
of counter-rotating cells which increase in number as R increases. The centre of the
main recirculation zone approaches the upper cold corner of the cavity as R increases.

Figure 4 shows the solution for τ = 0.213 and R = 1000. In this case the solution
consists of a single-cell circulation with an almost-constant temperature core, and
is similar to that obtained with an insulated lower boundary (Daniels & Punpocha
2004). In fact for the upper surface profile (2.7), τc = 0.213 is a critical value of τ for
high-Darcy–Rayleigh-number flows: for τ > τc the flow appears to enter a complex
and potentially unstable regime for sufficiently high values of R, whereas for τ < τc it
enters the stably stratified regime typified by the results of figures 2 and 3. For τ = τc,
the structure described by Daniels & Punpocha (2005) is recovered to leading order
as R → ∞. The main aim of the present paper is to describe the asymptotic structure
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(a) (b)

Figure 1. (a) Streamlines and (b) isotherms of the steady-state numerical solution for
L =1, τ = 1 and R = 2000. The flow is in the anticlockwise direction and ψ and T are
shown at intervals of 2 and 0.1 respectively.

(a) (b)

Figure 2. (a) Streamlines and (b) isotherms of the steady-state numerical solution for
L =1, τ = − 1 and R =2000. The flow direction alternates, with the upper cell in the
anticlockwise direction and values of ψ shown at intervals of 0.5 from 0 to 6; the streamlines
shown in the lower cells are ψ = − 0.1, − 0.005 and 0.005. The isotherms are shown at intervals
of 0.05.

of the more general class of high-Darcy–Rayleigh-number flows for which τ < τc. A
schematic diagram of the proposed structure is shown in figure 5.

4. Inner horizontal boundary layer
A starting point for consideration of the high-Darcy–Rayleigh-number structure is

the neighbourhood of the upper surface of the cavity (figure 5, region I), where the
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(a) (b)

Figure 3. (a) Streamlines and (b) isotherms of the steady-state numerical solution for
L = 1, τ = −1 and R = 5000. The flow direction alternates, with the upper cell in the
anticlockwise direction and values of ψ shown at intervals of 0.5 from 0 to 10; the streamlines
in the lower cells are ψ = − 0.1, −0.005 and 0.005. The isotherms are shown at intervals of
0.05.

(a)

(b)

Figure 4. (a) Streamlines and (b) isotherms of the steady-state numerical solution for
L = 1, τ = 0.213 and R = 1000. The flow is in the anticlockwise direction and ψ and T are
shown at intervals of 0.2 and 0.02 respectively.

flow is driven by the temperature profile (2.7). Locally the solution can be expanded
in the form

T (x, z) = θ̄(X, Z) + · · · , ψ(x, z) = R1/3L1/3φ̄(X, Z) + · · · , (4.1)

where x = LX, 1 − z = R−1/3L2/3Z and θ̄ and φ̄ satisfy the equations

∂2φ̄

∂Z2
= − ∂θ̄

∂X
,

∂2θ̄

∂Z2
=

∂(φ̄, θ̄)

∂(X, Z)
, (4.2)
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Figure 5. Schematic diagram of the flow structure in the large-Darcy–Rayleigh-number limit
for τ < τc . The regions shown are the inner horizontal boundary layer (I) and vertical boundary
layer (II), outer horizontal boundary layer (III) and vertical boundary layer (IV), core (V),
convective zone (VI), conductive sublayer (VII), transitional layer (VIII) and sublayer extension
(IX). The orders of magnitude of the dimensions of each region as R → ∞ are indicated.

with boundary conditions

φ̄ = 0, θ̄ = 1 − (1 − X)2 on Z = 0, (4.3)

φ̄ =
∂θ̄

∂X
= 0 on X = 1, (4.4)

φ̄ → 0,
∂θ̄

∂Z
→ 0 as Z → ∞. (4.5)

Here (4.3) are the conditions at the upper surface whilst (4.4) assumes that the
boundary conditions at the hotter sidewall apply directly to the horizontal boundary
layer solution. The conditions (4.5) at the bottom edge of the layer assume that the
main circulation (of order R1/3 in the streamfunction) is completed within the layer
and that the temperature approaches a constant value to be determined.

At the colder sidewall there is a vertical boundary layer (figure 5, region II) which
entrains fluid from the horizontal layer. Here

T (x, z) = Θ̄(ξ̄ , Z) + · · · , ψ(x, z) = R1/3L1/3Φ̄(ξ̄ , Z) + · · · , (4.6)
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where x = R−2/3L1/3ξ̄ and Θ̄ and Φ̄ satisfy the equations

∂2Φ̄

∂ξ̄ 2
= −∂Θ̄

∂ξ̄
,

∂2Θ̄

∂ξ̄ 2
=

∂(Φ̄, Θ̄)

∂(ξ̄ , Z)
(4.7)

and boundary conditions

Φ̄ = Θ̄ = 0 on Z = 0, (4.8)

Φ̄ =
∂Θ̄

∂ξ̄
= 0 on ξ̄ = 0, (4.9)

Φ̄ → Φ̄∞(Z), Θ̄ → Θ̄∞(Z) as ξ̄ → ∞. (4.10)

The edge profiles Φ̄∞ and Θ̄∞ are determined as part of the solution and must match
with the solution in the horizontal layer, requiring that

Φ̄∞(Z) = φ̄(0, Z), Θ̄∞(Z) = θ̄ (0, Z). (4.11)

In fact the interaction problem defined by (4.2)–(4.5) and (4.7)–(4.11) is identical to
that solved by Daniels & Punpocha (2005) in their treatment of the cavity with a
thermally insulated lower surface; in other words, the boundary condition at the
lower wall does not influence the solution near the upper surface at this level of
approximation. Confirmation of this can be seen from the heat-flux integral (2.8). In

the insulating case H =
∫ L

0
∂T /∂z(x, 0)dx = 0, while in the present case with τ < τc an

order-one adjustment in temperature is needed over an order-one depth, suggesting
that H remains finite (but non-zero) as R → ∞. However, since contributions to the
left-hand side of (2.8) from the horizontal boundary layer are of order R1/3, this
change in H has no impact on the leading-order solution there, which therefore
satisfies ∫ 1

0

∂θ̄

∂Z
(X, 0)dX = 0 (4.12)

at the upper surface, as in the insulating case.
Numerical and asymptotic solutions of (4.2)–(4.5) and (4.7)–(4.11) reported by

Daniels & Punpocha (2005) show that the temperature profile in (4.3) drives a two-
way flow in the horizontal boundary layer which is entrained and detrained by
the vertical boundary layer. As Z → ∞, the solutions in the horizontal and vertical
boundary layers assume the algebraically decaying forms

φ̄ ∼ Z−1p(X), θ̄ ∼ b + Z−3q(X), (4.13)

where b is a constant and

Φ̄ ∼ Z−1F0(η̄), Θ̄ ∼ b + Z−3G0(η̄), (4.14)

where η̄ = ξ̄ /Z2. Graphs of the functions p, q, F0 and G0 are given by Daniels &
Punpocha (2005) (see also § 5.1 below). A correction to these asymptotic forms arises
through the possibility of an origin shift in Z, equivalent to replacing Z by Z + D.
Values of b and D are determined from the numerical solution of the overall combined
boundary layer system and for the quadratic temperature profile in (4.3) are found to
be b = τc = 0.213 and D = 3.70 (Daniels & Punpocha 2005).

In the insulating problem b is the leading-order temperature of the core.
Here, however, the temperature field in the core (figure 5, region V) must
satisfy the condition (2.5) at z =0 and matching with (4.13) at z = 1 implies the
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conduction-dominated solution

T (x, z) = (τ + λz) + o(1), ψ(x, z) = o(1) (4.15)

as R → ∞, where the stratification parameter

λ = b − τ = τc − τ (4.16)

is assumed to be positive. Thus, from (2.8), H → λL as R → ∞. It might appear that
the z-dependence of the temperature field in (4.15) could match with a correction
of order R−1/3 to the temperature field within the inner horizontal layer. However,
the core solution does not match directly as z → 1− with the algebraic decay of the
horizontal boundary layer solution (4.13) as Z → ∞. This would require an order-one
streamfunction ψ within the core region depending on both x and z, and since
the order-one core temperature must satisfy ∂T /∂x = 0 and be consistent with (2.8)
(leading to the linear form in z given in (4.15)) it follows from the heat equation in
(2.3) that ∂ψ/∂x = 0, contradicting the assertion that ψ is a finite function of both x

and z. Instead, the core streamfunction is small as R → ∞, and an outer horizontal
layer exists where the vertical thermal gradients in the inner horizontal layer and
core become comparable, requiring that R1/3Z−4 ∼ 1, or 1 − z ∼ R−1/4. This outer
horizontal boundary layer is considered next.

5. Outer horizontal boundary layer
In the outer horizontal layer (figure 5, region III) the solution can be expanded in

the form

T (x, z) = b + R−1/4L1/2θ(X, ζ ) + · · · , ψ(x, z) = R1/4L1/2φ(X, ζ ) + · · · , (5.1)

as R → ∞, where

1 − z = R−1/4L1/2ζ − R−1/3L2/3D (5.2)

and θ and φ satisfy the equations

∂2φ

∂ζ 2
= − ∂θ

∂X
,

∂2θ

∂ζ 2
=

∂(φ, θ)

∂(X, ζ )
, (5.3)

with boundary conditions

φ =
∂θ

∂X
= 0 on X = 1, (5.4)

φ ∼ ζ −1p(X), θ ∼ ζ −3q(X) as ζ → 0, (5.5)

φ → 0, θ ∼ − λζ as ζ → ∞. (5.6)

Here it is assumed that a solution can be found consistent with the wall conditions
at X =1, and (5.5) and (5.6) represent matching with the inner horizontal layer and
core region respectively. In (5.2) the origin shift D is incorporated in the definition
of ζ .

At the cold endwall the solution must match with that in a vertical boundary layer
(figure 5, region IV). Here

T (x, z) = b + R−1/4L1/2Θ(ξ, ζ ) + · · · , ψ(x, z) = R1/4L1/2Φ(ξ, ζ ) + · · · , (5.7)
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where x = R−1/2ξ and Θ and Φ satisfy the equations

∂2Φ

∂ξ 2
= −∂Θ

∂ξ
,

∂2Θ

∂ξ 2
=

∂(Φ, Θ)

∂(ξ, ζ )
, (5.8)

with boundary conditions

Φ =
∂Θ

∂ξ
= 0 on ξ = 0, (5.9)

Φ ∼ ζ −1F0(η), Θ ∼ ζ −3G0(η) as ζ → 0, (5.10)

Φ → Φ∞(ζ ), Θ → Θ∞(ζ ) as ξ → ∞, (5.11)

where η = ξ/ζ 2. Here (5.9) are the wall conditions and (5.10) represent matching
with the vertical boundary layer associated with the inner horizontal layer. The edge
profiles Φ∞ and Θ∞ are to be determined as part of the solution and must match
with the solution in the outer horizontal layer, requiring that

Φ∞(ζ ) = φ(0, ζ ), Θ∞(ζ ) = θ(0, ζ ) for ζ < ζ0. (5.12)

Here ζ0 is to be determined and defines the terminal point of the vertical boundary
layer. This corresponds to the point at which the external streamfunction Φ∞ reaches
zero, Φ∞(ζ0) = 0. Alternative structures corresponding to a gradual approach of Φ∞
and Θ∞ − Θ∞(∞) + λζ to zero as ζ → ∞ appear not to be possible, because from
(5.8) perturbations εΦ̂ and εΘ̂ in the vertical boundary layer would satisfy the
system Φ̂ξξ = − Θ̂ξ , Θ̂ξξ = − λΦ̂ξ and there is no non-trivial solution satisfying the

wall conditions Φ̂ = Θ̂ξ = 0 at ξ = 0 with finite behaviour as ξ → ∞.
For ζ < ζ0 the solution of the horizontal boundary layer has the form

φ = φ0(ζ ) + Xφ1(ζ ) + · · · , θ = θ0(ζ ) + Xθ1(ζ ) + · · · , (5.13)

as X → 0, where φ0 = Φ∞ and θ0 =Θ∞, and it follows from (5.3) that

θ1 = −φ′′
0 , φ1 = (θ ′′

0 − φ′
0φ

′′
0 )/θ

′
0. (5.14)

The expansions (5.13) must be modified near ζ = ζ0 and the local structure there is
considered in § 5.2 below.

For ζ > ζ0 it is assumed that the solution in the outer horizontal layer satisfies the
wall conditions directly, so that

φ =
∂θ

∂X
= 0 on X = 0 for ζ > ζ0. (5.15)

An expansion of the form (5.13) is still valid as X → 0, but here φ0 = θ1 = 0, so that
θ ′′
0 − φ1θ

′
0 = 0. Using the conditions (5.6) it follows that

θ ′
0 = −λ exp

(
−

∫ ∞

ζ

φ1dζ

)
, ζ > ζ0. (5.16)

Now −φ1 is the scaled vertical slip velocity at the wall below ζ0. Figure 3 suggests
that this is weak and alternates in sign but is largest in the clockwise circulation
immediately below ζ0. Then the exponent in (5.16) is positive at ζ = ζ0, and so

−θ ′
0 → λ0 ≡ λ exp

(
−

∫ ∞

ζ0

φ1dζ

)
> λ as ζ → ζ0+. (5.17)
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This means that the vertical thermal gradient at the wall increases slightly from the
value λ to the value λ0 as ζ → ζ0+. This is consistent with a slight narrowing of the
isotherms in this region in figure 3.

The proposed structure is now investigated in more detail by finding asymptotic
solutions of the system in the limits ζ → 0, ζ → ζ0 and ζ → ∞. In this regard, it is first
useful to note that the heat flux integral (2.8) taken across the outer horizontal layer
and the vertical boundary layer implies that

∫ 1

X=0

(
∂θ

∂ζ
+ φ

∂θ

∂X

)
dX +

∫ ∞

ξ=0

Φ
∂Θ

∂ξ
dξ = −λ (5.18)

for all ζ > 0, where the constant on the right-hand side has been evaluated using
(5.6); the integral in ξ across the vertical boundary layer makes no contribution for
ζ > ζ0.

5.1. Limiting structure, ζ → 0

In the outer horizontal layer,

φ = ζ −1p(X) + ζ 3P (X) + · · · , θ = ζ −3q(X) + ζQ(X) + · · · , (5.19)

as ζ → 0, where the leading terms are those generated by the inner horizontal layer
and the correction terms are needed to satisfy the integral condition (5.18). This is
the first evidence that the thermal gradient in the core has an impact on the solution
near the upper surface of the cavity. Note also that a constant contribution can be
added in the temperature expansion (5.19) (and in the corresponding vertical layer
expansion in (5.26) below) reflecting the fact that in the outer layer system (5.3)–
(5.6), (5.8)–(5.12) and (5.15), the temperature is indeterminate to within an arbitrary
constant. This constant represents the possibility of a correction (of order R−1/4) to b

but would only be present if a correction to the temperature of this magnitude were
generated within the inner layer. Substitution of (5.19) into (5.3) gives

2p = −q ′, 12q = pq ′ − 3p′q (5.20)

and the solution found by Daniels & Punpocha (2005) is

p(X) = (12q0v)1/2(v + 1 − α2), q(X) = q0(v + 1 − α2)3, (5.21)

where v is given implicitly as a function of X by the formula

X = 1 − (q0v/12)1/2(v + 3 − 3α2), 0 < v < α2 (5.22)

and

q0 = 4α−2(1 − 2α2/3)−2/3. (5.23)

The value of the constant α is determined by the solution in the vertical boundary
layer (see (5.26)–(5.28) below) as α = F0(∞)/(12q0)

1/2 =µ0/2
√

3 = 0.750, and this
gives q0 = q(0) = 6.068 and p(0) = p0 = 2

√
3αq

1/2
0 = 6.400. The functions p and q are

monotonically decreasing in X, with p(1) = q ′(1) = 0 and q(1) = 0.508.
The equations for the correction terms P and Q are

6P = −Q′, 0 = pQ′ + p′Q − 3(Pq ′ + P ′q) (5.24)

and the solutions satisfying the boundary conditions P (1) = Q′(1) = 0 are

Q = µq, P = µp/3, (5.25)
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Ĝ0

Ĝ1
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Figure 6. Functions F̂ 0, Ĝ0, F̂ 1, Ĝ1 involved in the vertical boundary layer solution as ζ → 0.

where µ is an arbitrary constant. Note that a solution with Q = − λ is not possible,
confirming that the core temperature gradient in (4.15) cannot match directly with
the solution in the inner horizontal layer.

In the vertical boundary layer,

Φ = ζ −1F0(η) + ζ 3F1(η) + · · · , Θ = ζ −3G0(η) + ζG1(η) + · · · , (5.26)

where η = ξ/ζ 2. Substitution into (5.8) shows that the solutions for the leading terms
can be written as

F0 = q
1/2
0 F̂0(η̂), G0 = q0Ĝ0(η̂), (5.27)

where η̂ = q
1/2
0 η, Ĝ0 = 1 − F̂ ′

0 and F̂0 satisfies

F̂ ′′′
0 − F̂ 0F̂

′′
0 + 3F̂ ′

0(F̂
′
0 − 1) = 0, F̂ 0 = F̂ ′′

0 = 0, η̂ = 0, F̂ ′
0 → 0 as η̂ → ∞. (5.28)

This has a non-trivial solution found by Daniels & Punpocha (2005) with
F̂ 0(∞) = µ0 = 2.598 and F̂ ′

0(0) = 1.125. The values of p0 and q0 then follow from

the relation p0 = µ0q
1/2
0 and (5.23).

The correction terms F1 and G1 can now be obtained in the form

F1 = P0F̂ 1(η̂), G1 = Q0Ĝ1(η̂), (5.29)

where P0 = P (0) = µp0/3, Q0 = Q(0) = µq0, F̂ 1 is the solution of the system

F̂ ′′
1 − F̂ 0F̂

′
1 + 3(F̂ ′

0 − 1)F̂ 1 = −3µ−1
0 F̂ 0, F̂ 1 = 0, η̂ = 0, F̂ 1 → 1 as η̂ → ∞ (5.30)

and Ĝ1 = 1 − µ0F̂
′
1/3. The solutions for F̂1 and Ĝ1 obtained using a fourth-order

Runge-Kutta scheme are shown along with F̂ 0 and Ĝ0 in figure 6, and in particular
it was found that F̂ ′

1(0) = 0.866.
The correction terms in both the horizontal boundary layer and the vertical

boundary layer are now completely determined in terms of the single arbitrary
parameter µ. This is determined finally by appeal to the heat flux condition (5.18).
Making use of (5.25), the contributions to the left-hand side from the horizontal
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boundary layer as ζ → 0 are

−3

4
p0q0ζ

−4 + µ

(
5

∫ 1

0

qdX − p0q0

)
+ o(1), (5.31)

whilst the contributions from the vertical boundary layer are

3

4
p0q0ζ

−4 +
2

3
µp0q0

∫ ∞

0

F̂ ′
0F̂

′
1dη̂ + o(1). (5.32)

The leading terms cancel and the two integrals arising in the finite parts can be
evaluated using the analytical form for q given in (5.21) and the numerical solutions
for F̂ 0 and F̂ 1. Using α = µ0/2

√
3, this gives∫ 1

0

qdX =

√
3q3

0

4

(
256

315
α8 − 128

35
α6 +

32

5
α4 − 16

3
α2 + 2

)
α = 2.211 (5.33)

and
∫ ∞

0
F̂ ′

0F̂
′
1dη̂ =1.125. It now follows from (5.18) that µ = − 0.743λ.

As ζ → 0, the edge profiles Φ∞ and Θ∞ have the forms

Φ∞ ∼ 6.400ζ −1(1 + 1
3
µζ 4), Θ∞ ∼ 6.068ζ −3(1 + µζ 4), (5.34)

whilst the wall temperature Θw = Θ(0, ζ ) has the behaviour

Θw ∼ − 0.759ζ −3(1 − 2µζ 4). (5.35)

The effect of the positive gradient λ is thus to enhance the reduction of Φ∞ and
Θ∞ and to diminish the increase of Θw as ζ increases. In fact use of (5.34) as an
approximation at finite ζ predicts that Φ∞ reaches zero when ζ = ζ0 = 1.418λ−1/4. It
also predicts an inflection point of Φ∞ corresponding to a local minimum of the
horizontal detrainment velocity when ζ = 1.077λ−1/4. In addition, (5.34) and (5.35)
predict that the wall temperature Θw reaches a maximum value, and coincides with
the value of Θ∞, when ζ = 1.192λ−1/4. The results (5.34), (5.35) are strictly valid only
as ζλ1/4 → 0, but provide a useful guide to how the thermal gradient λ affects the
behaviour of the vertical boundary layer. It should be added that the correction terms
in (5.19) and (5.26) of relative order ζ 4 are made necessary by the integral condition
(5.18), which guarantees the appearance of the arbitrary constant µ in the combined
horizontal/vertical boundary layer solution. Apart from the constant contribution to
the temperature already discussed, an assumption of possible larger corrections as
ζ → 0 does not appear to lead to a consistent solution across both layers.

5.2. Limiting structure, ζ → ζ0

The structure to be discussed here is based on the conjecture that, near the cold
sidewall, the transition to a stratified flow with no wall entrainment occurs abruptly
near ζ0. Suppose that Φ∞ and Θ∞ both approach the point ζ0 in a linear fashion, so
that

Φ∞ = a1(ζ0 − ζ )+ a2(ζ0 − ζ )2 + · · · , Θ∞ = b0 + b1(ζ0 − ζ )+ b2(ζ0 − ζ )2 + · · · , (5.36)

as ζ → ζ0−, where a1 > 0 and b1 � 0. In the horizontal boundary layer there is a
transition region as X → 0 where

φ = X1/2f0(β) + Xf1(β) + · · · , θ = b0 + X1/2g0(β) + Xg1(β) + · · · (5.37)

and β = (ζ0 − ζ )/X1/2 which allows the linear forms to be modified. The leading-order
functions f0 and g0 satisfy the equations

f ′′
0 = 1

2
(βg′

0 − g0), g′′
0 = 1

2
(g0f

′
0 − g′

0f0), (5.38)



Boundary layer flow in a stably stratified porous medium 359

with boundary conditions f ′
0 → a1, g

′
0 → b1 as β → ∞ and below ζ0 the stratified flow

with no entrainment is equivalent to the behaviour f ′
0 → 0, g′

0 → λ0 as β → −∞. By

converting this into a coupled system for f0 and g0 − λ0β + λ
1/2
0 f0, it can be shown

that solutions have the form

g0 = λ
3/4
0 (β̃ − f̃ (β̃)), f0 = λ

1/4
0 f̃ (β̃), (5.39)

where β̃ = λ
1/4
0 β , and f̃ is the solution of

f̃ ′′ +
1

2
(β̃f̃ ′ − f̃ ) = 0, f̃ ′ → 0, β̃ → −∞, f̃ ′ → 1 − λ−1

0 b1, β̃ → ∞, (5.40)

namely

f̃ =
(
1 − λ−1

0 b1

){ β̃

2

(
1 + erf

β̃

2

)
+

1√
π

e−β̃2/4

}
. (5.41)

For a given value of b1, the value of a1 cannot be specified arbitrarily, and is given
by

a1 = λ
1/2
0

(
1 − λ−1

0 b1

)
. (5.42)

The solution of the nonlinear system (5.38) from the linear system (5.40) is an
example of the interesting general result that for λ0R > 0 the nonlinear porous
medium equations (2.3) admit solutions of the form T = λ0z − (λ0/R)1/2ψ + const.,
provided that ψ is a solution of the linear system ∇2ψ = (Rλ0)

1/2ψx .
The above analysis shows that the horizontal boundary layer equations can facilitate

an abrupt transition to a stratified state with thermal gradient λ0 and zero entrainment
provided the incoming thermal and streamfunction gradients are related by (5.42).
The next step is to consider whether this structure is consistent with a solution of the
vertical boundary layer. It is shown in the Appendix that in fact this requires b1 = 0,
and assuming that b2 �= 0, it follows that in the vertical boundary layer, as ζ → ζ0−,

Φ = (ζ0 − ζ )f (δ) + · · · , Θ = b0 + (ζ0 − ζ )2g(δ) + · · · , (5.43)

where δ = ξ (ζ0 − ζ ) and f and g satisfy the convection-dominated system

f ′ = b2 − g, fg′ − 2f ′g = 0. (5.44)

Thus g = kf 2, where k is a positive constant, b2 = ka2
1 and the solution for f which

vanishes at δ =0 is

f = a1 tanh(a1kδ). (5.45)

Closer to the wall there is a sublayer where conduction is significant and

Φ = (ζ0 − ζ )3/2F (γ ) + · · · , Θ = b0 + (ζ0 − ζ )3G(γ ) + · · · , (5.46)

where γ = ξ (ζ0 − ζ )1/2. Here matching with (5.45) gives F = a2
1kγ and G satisfies

G′′ − 3

2
a2

1kγG′ + 3a2
1kG = 0, G′ = 0, γ = 0, G ∼ a4

1k
3γ 2, γ → ∞. (5.47)

The required solution is

G = a4
1k

3γ 2 − 2
3
a2

1k
2. (5.48)

The quadratic dependence of temperature on streamfunction in the outer convective
zone is essential to ensure the existence of an inner temperature field with zero heat
transfer at the wall. Both the outer convective zone and the conductive sublayer
spread away from the wall (with ξ ∼ (ζ0 − ζ )−1 and (ζ0 − ζ )−1/2 respectively) so
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that the vertical boundary layer width increases dramatically as ζ → ζ0−. The wall
temperature has the behaviour

Θ ∼ b0 − 2
3
a2

1k
2(ζ0 − ζ )3, (5.49)

as ζ → ζ0−, indicating an approach to a maximum value at ζ = ζ0. In this sense
the structure of the vertical boundary layer described here is comparable with that
suggested by the small-ζ analysis except that the zero of Θw − Θ∞, the maximum
value of Θw and the zero of Φ∞ are predicted to occur simultaneously at the terminal
point ζ0.

With b1 = 0 for consistency within the vertical boundary layer, it now follows from
(5.42) that

a1 = −Φ ′
∞(ζ0) = λ

1/2
0 . (5.50)

In practice, this condition must be satisfied through the interaction between the
two layers. The finite value of Φ ′

∞(ζ0) confirms the initial assumption in (5.36) that
Φ∞ is linear in ζ as ζ → ζ0; vertical boundary layer structures for more general
forms Φ∞ ∼ (ζ0 − ζ )n as ζ → ζ0 can be found which have a quadratic dependence
of temperature on streamfunction in the outer convective zone, but these are not
consistent with the limiting behaviour Φ∞ ∼ λ

1/2
0 (ζ0 − ζ ) as β → ∞ generated within

the transition region of the horizontal boundary layer. The terminal condition (5.50)
is used to obtain an approximate estimate of the value of ζ0 in § 7 below.

It is now possible to return to the horizontal boundary layer and consider the
second terms in the transition region expansion (5.37), the solutions for f0 and g0

being given by (5.39)–(5.42) with b1 = 0 and a1 = λ
1/2
0 . The functions f1 and g1 satisfy

the equations

f ′′
1 = 1

2
βg′

1 − g1, g′′
1 = f ′

0g1 − 1
2
f0g

′
1 + 1

2
g0f

′
1 − g′

0f1 (5.51)

and boundary conditions

f1 ∼ a2β
2, g1 ∼ b2β

2 as β → ∞, f1 → 0, g1 → 0 as β → − ∞. (5.52)

Here the conditions as β → ∞ follow from matching with (5.13) whilst those as
β → − ∞ are equivalent to a requirement that θ ′′

0 (ζ0+) = − λ0φ1(ζ0+) = 0, so that the
upward slip velocity at the wall reaches zero just below the transition region. If it
were non-zero then f1 and g1 would be finite and quadratic respectively as β → − ∞,
and by considering the second-order equation for λ

1/2
0 f1 + g1 obtained from (5.51) it

can be shown that there is then a linear term in β as β → ∞ which cannot match
with (5.13). The solution of (5.51), (5.52) can be written in the form

g1 = −f̃ 1(β̃), f1 = λ
−1/2
0 f̃ 1(β̃), (5.53)

where f̃ 1 satisfies

f̃ ′′
1 +

1

2
β̃f̃ ′

1 − f̃1 = 0, f̃ 1 ∼ a2β̃
2, β̃ → ∞, f̃ 1 → 0, β̃ → − ∞, (5.54)

and it is required that

b2 = −a2λ
1/2
0 . (5.55)

Since b2 � 0 this implies that a2 = 1
2
Φ ′′

∞(ζ0−) � 0. This is consistent with the prediction
of the small-ζ analysis that there is an inflection point in the solution for Φ∞(ζ ) ahead
of the terminal point of the vertical boundary layer.
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The solution for f̃ 1 is

f̃1 = 4a2π
−1/2(β̃2 + 2)

∫ β̃

−∞
(β̂2 + 2)−2e−β̂2/4dβ̂. (5.56)

The relation between b2 and a2 determined by (5.55) implies that (θ ′′
0 −

φ′
0φ

′′
0 )(ζ0) = 2(b2 + a1a2) = 0, so that although b1 = − θ ′

0(ζ0) = 0 the outer function φ1 in
(5.13) is not singular as ζ → ζ0−. Note also that f̃ 1 ∼ a2β̃

2 + 2a2 as β̃ → ∞, and the
absence of a linear term in β̃ is consistent with the fact that no term of order X1/2

can be generated in the outer expansion (5.13).

5.3. Limiting structure, ζ → ∞
In the limit ζ → ∞ the horizontal boundary layer is dominated by uniform
stratification and exponentially weak flow. An asymptotic solution of equations (5.3)
subject to the end conditions (5.4) and (5.15) can be found by writing

φ = φ̂(X, ζ ), θ = −λζ + θ̂ (X, ζ ) (5.57)

and linearizing about the uniform stratification. Ignoring solutions that grow
exponentially as ζ → ∞, the general solutions for φ̂ and θ̂ satisfying (5.4) and (5.15)
are

φ̂ =

∞∑
n=1

rn(ζ ) sin nπX, θ̂ =

∞∑
n=0

sn(ζ ) cos nπX, (5.58)

where s0 is constant and

rn = (αn cos ωnζ + βn sinωnζ )e−ωnζ , sn =
2ω2

n

nπ
(αn sinωnζ − βn cos ωnζ )e−ωnζ , (5.59)

for n= 1, 2, . . . , where ωn = (nπλ1/2/2)1/2. The Fourier coefficients αn and βn and the
constant s0 are not determined locally, and it should be recognized that for n � 4 the
Fourier components identified here are of comparable magnitude to other terms in
φ and θ arising from nonlinear products of the partial derivatives of φ̂ and θ̂ . The
results indicate the existence of exponentially weak counter-rotating cells of depth
ζ ∼ π/ω1 =

√
2πλ−1/4 as ζ → ∞. Note that algebraically decaying solutions for φ̂ and θ̂

as ζ → ∞ are not possible : the outer horizontal layer transforms the algebraic decay
at the lower edge of the inner horizontal layer into the exponential decay needed to
match with the core solution (4.15).

5.4. Approximate solution

By combining the results of § 5.1 and § 5.3 above, an approximate solution of the
entire outer horizontal boundary layer can be constructed as follows. It is assumed
that for ζ < ζ1 (where ζ1 is to be determined) the solution is represented by the leading
terms of the small-ζ expansion (5.19), and that for ζ > ζ1 it is represented by the
large-ζ form (5.57)–(5.59) but with ζ replaced by ζ − ζ1 for convenience. Continuity
of φ and θ at ζ = ζ1 then requires

ζ −1
1 p(X) =

∞∑
n=1

αn sin nπX, ζ −3
1 q(X) = s0 − 2π−1

∞∑
n=1

n−1βnω
2
n cos nπX, (5.60)

so that

αn = 2ζ −1
1 In, βn = −nπω−2

n ζ −3
1 Jn, s0 = ζ −3

1 J0, (5.61)
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n In Jn

0 2.21110
1 1.70973 1.08841
2 1.03533 0.32952
3 0.67228 0.14262
4 0.50876 0.08093
5 0.40666 0.05174
6 0.33918 0.03595
7 0.29078 0.02641
8 0.25449 0.02021
9 0.22624 0.01596

10 0.20363 0.01293

Table 1. Values of In and Jn for n up to 10.

where

In =

∫ 1

0

p(X) sin nπXdX, n = 1, 2, · · · , Jn =

∫ 1

0

q(X) cos nπXdX, n = 0, 1, · · · .

(5.62)

These integrals can be evaluated using the analytical forms (5.21) and a change of
variable V = v1/2, where v is defined by (5.22), to give

In = 3q0

∫ α

0

V (V 2 + 1 − α2)2 sin{nπ(1 − (q0/12)1/2V (V 2 + 3 − 3α2)}dV, (5.63)

Jn = (3q3
0/4)1/2

∫ α

0

(V 2 + 1 − α2)4 cos{nπ(1 − (q0/12)1/2V (V 2 + 3 − 3α2)}dV. (5.64)

Values of In and Jn are shown in table 1 for n up to 10. Note that for n= 0 the
value of J0 is consistent with the analytical formula (5.33). A value for ζ1 can be
obtained by requiring continuity of the mean vertical thermal gradient across the

layer,
∫ 1

0
θζ (X, ζ1)dX, giving ζ1 = (3J0/λ)

1/4. The approximate solution for ζ > ζ1 is
then

φ =

∞∑
n=1

(αn cos ωn(ζ − ζ1) + βn sin ωn(ζ − ζ1))e
−ωn(ζ−ζ1) sin nπX, (5.65)

θ = λ(ζ1 − ζ ) +
J0

ζ 3
1

+

∞∑
n=1

2ω2
n

nπ
(αn sinωn(ζ − ζ1) − βn cos ωn(ζ − ζ1))e

−ωn(ζ−ζ1) cos nπX.

(5.66)

The flow pattern predicted by a 10-mode approximation to φ in (5.65) is shown in
figure 7 and can be compared with the numerical results of figures 2 and 3. The
approximate solution reproduces the slight downward tilt of the dividing streamlines
and quite accurately predicts their vertical separation ζ ∼

√
2πλ−1/4; the vertical scaling

in figure 7 corresponds to L =1, R = 5000 and λ= b − τ =1.213, allowing a direct
comparison with figure 3. The approximate solution does not provide an accurate
representation of the flow near the upper stagnation point on the cold endwall but
this is not surprising because it does not incorporate the vertical boundary layer in
the region just below ζ1 or the local structure identified in § 5.2, including the terminal
condition (5.50).
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0
0

X

6.4

λ1/4(ζ – ζ1)

1

Figure 7. Approximate solution of the outer horizontal layer for ζ > ζ1 showing the
streamlines predicted by a 10-mode approximation to φ in (5.65). The vertical scale is chosen
to correspond to the actual length scale in the cavity in the case where L =1, R = 5000 and
τ = −1, allowing a direct comparison with the numerical solution of figure 3.

6. Vertical boundary layer terminal structure
The terminal form of the vertical boundary layer solution proposed in § 5.2 consists

of an outer zone ξ ∼ (ζ0 − ζ )−1 dominated by convection and an inner conduction zone
ξ ∼ (ζ0 − ζ )−1/2. In this section it is considered how this near-wall structure is modified
close to ζ0. As ζ approaches ζ0 the width of the outer zone x ∼ R−1/2ξ ∼ R−1/2(ζ0 − ζ )−1

increases until it becomes comparable with the vertical scale of variation in z. This
occurs in a convection-dominated zone (figure 5, region VI).

6.1. Convective zone

Here the local coordinates x̃ and ζ̃ are defined by

x = R−3/8L1/4λ
−1/4
0 x̃, ζ = ζ0 − R−1/8L−1/4λ

−1/4
0 ζ̃ , (6.1)

and the solution is

T = {b + R−1/4L1/2b0 + · · ·} +R−1/2λ
1/2
0 Θ̃(x̃, ζ̃ ) + · · ·, ψ =R1/8L1/4λ

1/4
0 Φ̃(x̃, ζ̃ ) + · · ·,

(6.2)

where the terms in parentheses (and in (6.10), (6.14) and (6.25) below) are constant
contributions to the temperature field. Substitution into (2.3) shows that Θ̃ and Φ̃

satisfy

∇̃2Φ̃ = −∂Θ̃

∂x̃
,

∂(Φ̃, Θ̃)

∂(x̃, ζ̃ )
= 0, (6.3)

where ∇̃2 = ∂2/∂x̃2 + ∂2/∂ζ̃ 2. Matching with the outer zone of the vertical boundary
layer as ζ̃ → ∞ implies that Θ̃ = kΦ̃2, and it follows that Φ̃ is the solution of the
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elliptic system

∇̃2Φ̃ = −2kΦ̃
∂Φ̃

∂x̃
, (6.4)

Φ̃ = 0 on x̃ = 0 and ζ̃ = 0, (6.5)

Φ̃ ∼ ζ̃ tanh(kx̃ζ̃ ) as ζ̃ → ∞, (6.6)

Φ̃ ∼ ζ̃ as x̃ → ∞. (6.7)

Here the conditions (6.5) on x̃ = 0 and ζ̃ = 0 follow from matching with the solutions
in a conductive sublayer and a transitional zone (respectively) to be discussed below,
(6.6) follows from matching with the vertical boundary layer and (6.7) from matching
with the outer horizontal boundary layer (where the boundary layer constant a1 has
been replaced in terms of λ0 using (5.50)). Inclusion of the thermal gradient λ0 in
the scalings (6.1) and (6.2) allows this parameter to be removed from the system
(6.4)–(6.7).

As x̃ → 0 it can be expected that Φ̃ ∼ W (ζ̃ )x̃, where the slip velocity W (ζ̃ ) has the
asymptotic behaviours

W ∼ kζ̃ 2, ζ̃ → ∞, W ∼ W0ζ̃ , ζ̃ → 0, (6.8)

with W0 > 0. Similarly, as ζ̃ → 0 it can be expected that Φ̃ ∼ U (x̃)ζ̃ , where the
horizontal velocity U (x̃) has the asymptotic behaviours

U ∼ W0x̃, x̃ → 0, U → 1, x̃ → ∞. (6.9)

Near the origin the solution of (6.4)–(6.7) is equivalent to a stagnation point flow
Φ̃ ∼ W0x̃ζ̃ .

6.2. Conductive sublayer

Between the convective zone and the vertical wall there is a conductive sublayer
(figure 5, region VII), the continuation of the inner zone of the vertical boundary
layer. Here

T = {b + R−1/4L1/2b0 + · · ·} + R−5/8L−1/4λ
1/4
0 T̃ (ξ̃ , ζ̃ ) + · · · ,

ψ = R1/16L1/8λ
1/8
0 ψ̃(ξ̃ , ζ̃ ) + · · · ,

}
(6.10)

as R → ∞, where x = R−7/16L1/8λ
−3/8
0 ξ̃ , and from (2.3) the functions ψ̃ and T̃ satisfy

∂2ψ̃

∂ξ̃ 2
= 0,

∂2T̃

∂ξ̃ 2
=

∂(T̃ , ψ̃)

∂(ξ̃ , ζ̃ )
. (6.11)

Matching with the convective zone and satisfaction of the wall condition ψ̃ = 0 at
ξ̃ = 0 gives

ψ̃ = W (ζ̃ )ξ̃ . (6.12)

The solution for T̃ satisfying the wall condition ∂T̃ /∂ξ̃ = 0 at ξ̃ =0, with the behaviour
T̃ ∼ kψ̃2 as ξ̃ → ∞ needed to match with the convective zone, and which matches with
the inner zone of the vertical boundary layer as ζ̃ → ∞, is

T̃ = k

(
W 2(ζ̃ )ξ̃ 2 − 2

∫ ζ̃

0

W (ζ̃ )dζ̃

)
. (6.13)

Within this sublayer the wall temperature undergoes an adjustment from the cubic
form T̃ ∼ −2k2ζ̃ 3/3 as ζ̃ → ∞, consistent with (5.49), to the quadratic form T̃ ∼
− kW0ζ̃

2 as ζ̃ → 0.
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6.3. Transitional layer

Beneath the convective zone there is a region where the stable stratification develops
and the entrainment velocity decays to exponentially small values. Within this
transitional layer (figure 5, region VIII),

T = {b + R−1/4L1/2b0 + · · ·} + R−7/16L1/8λ
5/8
0 θ̃ (x̃, z̃) + · · · ,

ψ = R1/16L1/8λ
1/8
0 φ̃(x̃, z̃) + · · · ,

}
(6.14)

as R → ∞, where

ζ = ζ0 − R−3/16L−3/8λ
−3/8
0 z̃ (6.15)

and θ̃ and φ̃ satisfy the horizontal boundary layer equations

∂2φ̃

∂z̃2
= −∂θ̃

∂x̃
,

∂2θ̃

∂z̃2
=

∂(θ̃ , φ̃)

∂(x̃, z̃)
, (6.16)

with boundary conditions

φ̃ ∼ U (x̃)z̃, θ̃ → 0 as z̃ → ∞, φ̃ → 0, θ̃ ∼ z̃ as z̃ → − ∞, (6.17)

φ̃ =
∂θ̃

∂x̃
= 0 on x̃ = 0. (6.18)

Here (6.17) follow from matching with the convective zone and from the assumption
of a stratified region of weak motion beneath the transitional layer, whilst (6.18)
assumes that the solution satisfies the wall conditions at x̃ = 0; the wall temperature
θ̃ (0, z̃) is to be determined as part of the solution. Integration of the second equation
in (6.16) and use of (6.17), (6.18) shows that the solution of (6.16)–(6.18) satisfies the
integral relation ∫ ∞

−∞
φ̃

∂θ̃

∂z̃
dz̃ = x̃ (6.19)

for all 0 � x̃ < ∞, and it is easily established that as x̃ → ∞ the solution approaches
the transitional structure of the outer horizontal boundary layer near ζ0 identified in
§ 5.2, with

φ̃ ∼ x̃1/2f̃ (β̃), θ̃ ∼ x̃1/2g̃(β̃) as x̃ → ∞, (6.20)

where g̃ = β̃ − f̃ , β̃ = z̃/x̃1/2 and f̃ is the solution (5.41) with b1 = 0:

f̃ =
β̃

2

(
1 + erf

β̃

2

)
+

1√
π

e−β̃2/4. (6.21)

As x̃ → 0, the solution can be expanded in the form

θ̃ = θ̃0(z̃) + x̃2θ̃2(z̃) + · · · , φ̃ = x̃φ̃1(z̃) + x̃3φ̃3(z̃) + · · · , (6.22)

with successive terms determined from (6.16) in terms of the unknown temperature
θ̃0(z̃) at x̃ = 0. Thus

φ̃1 = −θ̃ ′′
0 /θ̃ ′

0, θ̃2 = −φ̃′′
1/2, φ̃3 = (2φ̃′

1θ̃2 − φ̃1θ̃
′
2 − θ̃ ′′

2 )/3θ̃ ′
0, · · · . (6.23)

A numerical solution of (6.16)–(6.18) was obtained by inserting time derivatives
∂φ̃/∂t and ∂θ̃/∂t on the right-hand sides of (6.16) and allowing the solution to evolve
to its steady form from an initial state taken as

φ̃ = U (x̃)x̃1/2
∞ f̃ (z̃/x̃1/2

∞ ), θ̃ = x̃1/2
∞ g̃(z̃/x̃1/2

∞ ) at t = 0. (6.24)
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Figure 8. Profiles of θ̃ and φ̃ in the transitional layer for various values of x̃.

The equations were discretized using central differences in x̃ and z̃ on the numerical
domain 0 � x̃ � x̃∞, −z̃∞ � z̃ � z̃∞ and a forward difference in time; checks on
accuracy were made with various outer boundaries and step sizes.

Results for outer boundaries x̃∞ = 10, z̃∞ = 12 with step sizes �x̃ = 0.1, �z̃ = 0.2
and �t = 10−3 are shown in figure 8 for the case where U (x̃) = 1 − e−x̃ . In this
case a converged solution was achieved when t reached a value of approximately
400. One difficulty encountered was that in the region of very weak flow near −z̃∞,
slightly negative values of φ̃ were generated which eventually led to instability; this
was countered by replacing such values of φ̃ by zero at each time step, so that
effectively the outer boundary z̃ = − z̃∞ was replaced by a boundary which increased
in magnitude with x̃. A large value of z̃∞ is essential to capture the spread of the
solution with x̃, and an alternative remedy (which was not attempted) would be to
carry out the computation on an appropriate non-uniform grid or to use a coordinate
transformation of the equations to reflect the structure of the solution (that is, with
z̃ ∼ 1 as x̃ → 0 and z̃ ∼ x̃1/2 as x̃ → ∞). The numerical results confirmed the emergence
of the asymptotic form (6.20) as x̃ → ∞.

At the junction of the conductive sublayer and the transitional layer where z̃ and
ξ̃ are finite (figure 5, region IX), the solution is given by

T = {b +R−1/4L1/2b0 + · · ·} +R−7/16L1/8λ
5/8
0 T̂ (ξ̃ , z̃)+ · · · , ψ = ψ̂(ξ̃ , z̃)+ · · · , (6.25)

and in the governing equations (2.3) the term ∇2ψ is neglected at leading order. Thus
T̂ is independent of ξ̃ and the solution is simply a continuation of the leading terms
in the transitional layer solution as x̃ → 0:

T̂ = θ̃0(z̃), ψ̂ = −θ̃ ′′
0 ξ̃ /θ̃ ′

0. (6.26)

This completes a leading-order description of the solution structure throughout the
cavity in the limit as R → ∞.
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7. Discussion
An asymptotic structure in the limit as R → ∞ has been described for thermally

driven cavity flow in a porous medium where a stable uniformly stratified state is
modified by a monotonic horizontal temperature differential at the upper boundary.
At the upper surface there is an inner horizontal boundary layer of depth order
R−1/3, where the temperature adjusts to a constant value somewhat larger than the
minimum temperature at the upper surface. A second adjustment then takes place
in an outer horizontal layer over a depth of order R−1/4 where the vertical thermal
gradient adjusts to its uniform value, λ. Solutions in the two horizontal layers depend
on the interaction with the vertical boundary layer near the colder sidewall. The width
of this layer increases with depth until the layer eventually terminates at a stagnation
point on the wall where the wall temperature reaches a maximum value. This occurs
at a finite depth measured on the vertical scale of the outer horizontal layer, this
depth being determined by the relation (5.50) between the horizontal flow speed and
the square root of the vertical temperature gradient. This allows a local transition
from flow to stratification to occur. The influence of the vertical thermal gradient λ is
shown, via a heat flux integral argument, to extend to the first correction terms in the
outer horizontal layer solution as ζ → 0; this in turn generates corrections of relative
order R−1/3 within the inner horizontal layer.

A full solution of the outer horizontal/vertical layer problem defined by (5.3)–
(5.6), (5.8)–(5.12) and (5.15) requires a numerical approach that takes account of the
singular structure of the solution not only as ζ → 0 but also as ζ → ζ0 and X → 0. It
also requires an interactive treatment of the horizontal and vertical layers, allowing
the terminal point ζ0 to be determined. In such a solution it would be possible to
exploit the fact that the parameter λ can be eliminated by rescaling the temperatures,
streamfunctions and coordinates ξ and ζ with λ3/4, λ1/4, λ−1/2 and λ−1/4 respectively. In
particular, the terminal point ζ0 has the form ζ0 = λ−1/4ζ̂0 where ζ̂0 is a pure number,
which from (5.2) is equivalent to

z ∼ 1 − ζ̂0λ
−1/4L1/2R−1/4 + DL2/3R−1/3, R → ∞. (7.1)

A numerical solution of the outer problem to find ζ0 is not attempted here, and
the estimate ζ0 = 1.418λ−1/4 given by the small-ζ analysis of § 5.1 is too low, the
corresponding value of −Φ ′

∞(ζ0) = 12.74λ1/2 being much higher than that needed to

satisfy the terminal condition (5.50), −Φ ′
∞(ζ0) = λ

1/2
0 . In practice this condition imposes

a higher value of ζ0, which can be estimated by approximating λ0 by λ and writing
Φ∞(ζ ) = λ1/4Φ̂∞(ζ̂ ) where ζ = λ−1/4ζ̂ . The function Φ̂∞ must then satisfy Φ̂∞ ∼ p0ζ̂

−1 as
ζ̂ → 0, Φ̂∞(ζ̂0) = 0 and Φ̂ ′

∞(ζ̂0) = − 1. For an interpolation based on a suitable class of

cotangent functions Φ̂∞ = A cot(Bζ̂ ), it follows that A= B−1 =p
1/2
0 and the terminal

point is determined as ζ̂0 = πp
1/2
0 /2 = 3.97. This approximation to Φ̂∞ can be improved

to allow for the correction terms of order ζ̂ 3 in Φ̂∞ as ζ̂ → 0 by incorporating a
multiplicative function of ζ̂ that approaches unity as ζ̂ tends to 0 and ζ̂0.

A comparison of (7.1) with numerical computations requires consideration of the
transitional layer centred on ζ0 where the motion adjacent to the cold sidewall finally
succumbs to the stable stratification. The transformation from flow to stratification
is illustrated by the transitional layer profiles in figure 8, and can be observed in
figures 2 and 3 as a transition from near-horizontal streamlines to near-horizontal
isotherms. According to the asymptotic theory, the upper limit of the transitional
layer is associated with the wall temperature attaining its maximum value, whilst
the lower limit is associated with the stagnation point. This is consistent with the
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Figure 9. Comparison of the asymptotic theory with numerical results for the case
τ = − 1, L = 1 and values of R from 1000 to 7000 showing the terminal height z of the
vertical boundary layer predicted by (7.1) (—), the vertical extent of the transitional layer
predicted by (6.15) with z̃ = ± 3 (- - -) and numerical results for the height of the upper
stagnation point (�) and maximum wall temperature (o).

behaviours in figures 2 and 3 and explains why the maximum wall temperature and
stagnation point do not coincide in practice, even though, on the scale of the vertical
boundary layer, they occur at the same location ζ = ζ0. Figure 9 shows the height
of the maximum wall temperature and of the stagnation point given by numerical
computations for the case L =1, τ = − 1 and a range of values of R up to 7000. The
gradual convergence with increasing R is consistent with the asymptotic theory and
in particular with the terminal height of the vertical boundary layer predicted by
(7.1) with λ= b − τ = 1.213, D =3.70 and ζ̂0 = 3.97, also shown in figure 9. It is also
consistent with the vertical extent of the transitional layer as given by (6.15) with
upper and lower boundaries taken at z̃ = ± 3 and λ0 approximated by λ; this too is
shown in figure 9. An increase of ζ̂0 to 5 or a decrease to 3 moves the asymptotic
curve of the terminal height outside the numerical data in figure 9, suggesting that
the estimate of ζ̂0 as 3.97 is a reasonable one.

Another test of the present theory concerns the prediction of the depth of the weak
convection cells in the lower part of the cavity. The analysis of § 5.3 predicts the cell
depth between zero streamlines to be

z = zd ∼
√

2πλ−1/4L1/2R−1/4, R → ∞. (7.2)

Figure 10 shows a comparison of this formula with numerical results for L =1, τ = − 1
and values of R up to 7000; excellent agreement is obtained, confirming both the
power-law dependence on R and the multiplicative factor in formula (7.2).

The vertical temperature gradient in the lower part of the cavity is predicted to
approach the value λ as R → ∞. This is consistent with the trend of the values 1.44
and 1.39 in figures 2 and 3 respectively, and a gradual approach to the value 1.213
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Figure 10. Comparison of the asymptotic theory with numerical results for the case
τ = − 1, L = 1 and values of R from 1000 to 7000 showing a logarithmic plot of the cell
depth zd of the convection cell immediately below the main cell, as predicted by (7.2) (—) and
numerical computation (o).

from above is to be expected given that in practice the change from τ to b occurs
over the region below the inner horizontal layer rather than over the full cavity depth.

In terms of applications, the result (7.1) is of interest in that it defines the critical
depth to which the upper surface circulation extends. This is significant in predicting
the extent of the near-surface spread of pollution in groundwater, for example from
groundfill sites and from industrial waste discharge in coastal and river-bed systems.
The upper surface temperature profile influences the critical depth through the value
of D in the R−1/3 term in (7.1) and, primarily, through the value of b which, along
with the lower surface temperature τ , determines the value of λ in the R−1/4 term. The
critical depth is thus completely determined by λ, D, the Darcy–Rayleigh number R

and the aspect ratio L. For large (negative) lower surface temperatures τ of order
R1/3L−2/3, the upper surface temperature has a more direct influence because the
inner and outer horizontal layers merge to form a single horizontal layer of depth
R−1/3L2/3, and the two terms in (7.1) then have the same order of magnitude. The
resulting modified boundary layer problem is to solve the inner system (4.2)–(4.5),
(4.7)–(4.11), but with the thermal condition in (4.5) replaced by ∂θ̄/∂Z → − λ̄ as
Z → ∞, where λ̄ = λR−1/3L2/3 is a finite parameter. The terminal point of the vertical
boundary layer then occurs at a finite value of Z that depends on both λ̄ and the
upper surface temperature profile.

The author acknowledges the helpful comments of referees.

Appendix. Vertical boundary layer structure as ζ → ζ0

Suppose that the outer forms (5.36) apply with both a1 and b1 non-zero. This would
require a solution in the vertical boundary layer of the form

Φ = (ζ0 − ζ )f (ξ ) + · · · , Θ = b0 + (ζ0 − ζ )g(ξ ) + · · · ,
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as ζ → ζ0−, in place of (5.43). From (5.8), g = b1 − f ′ and f satisfies the equation

f ′′′ − ff ′′ + f ′(f ′ − b1) = 0.

The exact solution with the required behaviour as ξ → ∞ is

f = a1 + c1 exp
{

−
((

a2
1 + 4b1

)1/2 − a1

)
ξ/2

}
,

where c1 is an arbitrary constant. However, this cannot satisfy the two wall conditions
f = f ′′ = 0 at ξ = 0 unless b1 = 0, in which case the solution for f is null. An
implication is that the outer temperature field is of smaller magnitude as ζ → ζ0,
leading to the structure described in § 5.2.
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